Adaptive long-term changes in the functioning of nervous system (plasticity, memory) are not written in the genome, but are directly associated with the changes in expression of many genes comprising epigenetic regulation. Summarizing the known data regarding the role of epigenetics in regulation of plasticity and memory, our employees from the Laboratory of Cellular Neurobiology of Learning would like to highlight several key aspects. (i) Different chromatin remodeling complexes and DNA methyltransferases can be organized into high-order multiprotein repressor complexes that are cooperatively acting as the “molecular brake pads”, selectively restricting transcriptional activity of specific genes at rest. (ii) Relevant physiological stimuli induce a cascade of biochemical events in the activated neurons resulting in translocation of different signaling molecules (protein kinases, NO-containing complexes) to the nucleus. (iii) Stimulus-specific nitrosylation and phosphorylation of different epigenetic factors is linked to a decrease in their enzymatic activity or changes in intracellular localization that results in temporary destabilization of the repressor complexes. (iv) Removing “molecular brakes” opens a “critical time window” for global and local epigenetic changes, triggering specific transcriptional programs and modulation of synaptic connections efficiency. It can be assumed that the reversible post-translational histone modifications serve as the basis of plastic changes in the neural network. On the other hand, DNA methylation and methylation-dependent 3D chromatin organization can serve a stable molecular basis for long-term maintenance of plastic changes and memory
In humans, early pathological activity on invasive electrocorticograms (ECoGs) and its putative association with pathomorphology in the early period of traumatic brain injury (TBI) remains obscure. Our scientists from the Laboratory of Functional Biochemistry of Nervous System assessed pathological activity on scalp electroencephalograms (EEGs) and ECoGs in patients with acute TBI, early electrophysiological changes after lateral fluid percussion brain injury (FPI), and electrophysiological correlates of hippocampal damage (microgliosis and neuronal loss), a week after TBI in rats. They revealed that epileptiform activity on ECoGs was evident in 86% of patients during the acute period of TBI, ECoGs being more sensitive to epileptiform and periodic discharges. A “brush-like” ECoG pattern superimposed over rhythmic delta activity and periodic discharge was described for the first time in acute TBI. In rats, FPI increased high-amplitude spike incidence in the neocortex and, most expressed, in the ipsilateral hippocampus, induced hippocampal microgliosis and neuronal loss, ipsilateral dentate gyrus being most vulnerable, a week after TBI. Epileptiform spike incidence correlated with microglial cell density and neuronal loss in the ipsilateral hippocampus. Based on these results, our employees concluded that epileptiform activity is frequent in the acute period of TBI period and is associated with distant hippocampal damage on a microscopic level. This damage is probably involved in late consequences of TBI. The FPI model is suitable for exploring pathogenetic mechanisms of post-traumatic disorders
Placozoa are small disc-shaped animals, representing the simplest known, possibly ancestral, organization of free-living animals. With only six morphological distinct cell types, without any recognized neurons or muscle, placozoans exhibit fast effector reactions and complex behaviors. However, little is known about electrogenic mechanisms in these animals. Here, we showed the presence of rapid action potentials in four species of placozoans (Trichoplax adhaerens [H1 haplotype], Trichoplax sp.[H2], Hoilungia hongkongensis [H13], and Hoilungia sp. [H4]). These action potentials are sodium-dependent and can be inducible. The molecular analysis suggests the presence of 5–7 different types of voltage-gated sodium channels, which showed substantial evolutionary radiation compared to many other metazoans. Such unexpected diversity of sodium channels in early-branched metazoan lineages reflect both duplication events and parallel evolution of unique behavioral integration in these nerveless animals
SHANK3 encodes a scaffold protein involved in postsynaptic receptor density in glutamatergic synapses, including those in the parvalbumin (PV)+ inhibitory neurons—the key players in the generation of sensory gamma oscillations, such as 40-Hz auditory steady-state response (ASSR). However, 40-Hz ASSR was not studied in relation to SHANK3 functioning. Here, we present a 15-year-old girl (SH01) with previously unreported duplication of the first seven exons of the SHANK3 gene (22q13.33). SH01’s electroencephalogram (EEG) during 40-Hz click trains of 500 ms duration binaurally presented with inter-trial intervals of 500–800 ms were compared with those from typically developing children (n = 32). SH01 was diagnosed with mild mental retardation and learning disabilities (F70.88), dysgraphia, dyslexia, and smaller vocabulary than typically developing (TD) peers. Her clinical phenotype resembled the phenotype of previously described patients with 22q13.33 microduplications (≈30 reported so far). SH01 had mild autistic symptoms but below the threshold for ASD diagnosis and microcephaly. No seizures or MRI abnormalities were reported. While SH01 had relatively preserved auditory event-related potential (ERP) with slightly attenuated P1, her 40-Hz ASSR was totally absent significantly deviating from TD’s ASSR. The absence of 40-Hz ASSR in patients with microduplication, which affected the SHANK3 gene, indicates deficient temporal resolution of the auditory system, which might underlie language problems and represent a neurophysiological biomarker of SHANK3 abnormalities.