УДК 612.822.3
© 1990 г.

БЕРХЛЮТОВ В. М.

ПРОСТРАНСТВЕННАЯ И ВРЕМЕННАЯ ВАРИАБЕЛЬНОСТЬ АЛЬФА-РИТМА МАГНИТОЭНЦЕФАЛОГРАММ У ЧЕЛОВЕКА В НОРМЕ

У 13 здоровых испытуемых в возрасте от 20 до 30 лет регистрировали магнитоэнцефалограммы в задних отделах головы. Испытуемые находились в состоянии пассивного бодрствования. Строили спектры мощности, приняя быстрое Фурье-преобразование. Выбирали максимальные значения спектра мощности в диапазоне альфа-ритма и вычисляли значение средней амплитуды. Эти данные от порядка 30 точек над головой использовали для построения нозоамплитудных карт. Анализ карт показал: различные варианты распределений экстреумов поля у разных испытуемых; устойчивость распределения у одного испытуемого в течение нескольких недель; амплитудную асимметрию экстреумов, связанную с полом. Проводили узкополосную фильтрацию магнитоэнцефалограммы от точек экстреумов и строили гистограммы распределений амплитуд. Выявлено от одной до трех амплитудных мод. Показана непрерывность в течение нескольких секунд и обратная зависимость времени присутствия данной амплитуды от ее величины.

С момента установления факта дипольного распределения магнитного поля (МП) головного мозга человека в диапазоне альфа-ритма [6, 7] интерес исследователей был направлен на проблему локализации его источников. Технические трудности многоканальной регистрации магнитоэнцефалограммы (МЭГ) заставили искать способы адекватного анализа спонтанной магнитной активности мозга при одноканальной записи.

Эти данные позволили нам предположить наличие индивидуальных особенностей пространственных распределений МП альфа-ритма, учи́вая, что предыдущие результаты были получены на небольшом числе испытуемых.

Основная сложность в исследовании спонтанного альфа-ритма связана со значительной вариабельностью его амплитуды. Для выделения маловариабельных пространственных распределений альфа-ритма на ЭЭГ были успешно применены методы адаптивной сегментации [8]. Выявление подобных свойств альфа-ритма МЭГ позволило бы более детально изучать его источники как одноканальным, так и многоканальным магнитотометром.
МЕТОДИКА

Регистрацию производили одноканальным СКВИД-магнитометром, предназначенным для биомедицинских исследований. Шум всей системы составлял 50 ФТ/Гц² (рис. 1). Нижнюю петлю градиентометра 2-й производной (диаметром 2,4 и базой 6 см) располагали на расстоянии 15±3 мм от скальпа испытуемого. Сигнал подвергался фильтрации следующим гребенчатым фильтром на 50 Гц. Затем сигнал подавали на стандартный ЭЭГ-усилитель фирмы «Пихон-Кохден» (Япония). Постоянную составляющую фильтра усилителя устанавливали 0,1 с, а высокие частоты ограничивали до 50 Гц. Данные записывали на магнитограф фирмы «Геак» (Япония).

Мы обследовали 13 здоровых испытуемых (пять мужчин и восемь женщин) в возрасте от 20 до 30 лет, не имеющих отклонений в неврологическом статусе. У одного из испытуемых измерения были сделаны повторно через неделю.

Запись магнитных сигналов проводили в затемненном звукоизолированном помещении в положении испытуемого лежа с закрытыми глазами. Перед началом эксперимента ему рекомендовали расслабиться. Адаптация к условиям опыта проходила в течение 20—30 мин. Сканирование проводили с помощью координатных шаблонов в углах прямоугольной сетки с шагом 2—2,5 см (шаг зависел от размеров и формы головы). В каждом эксперименте, длившемся от 2 до 4 ч, удавалось записать МЭГ в течение 50 с от 25—50 точек. В начале и конце эксперимента записывали шум и калибровочный сигнал величиной 220±10 ФТ.

После серии экспериментов проводили обработку данных на ЭВМ фирмы «Лабтаг» (Австралия). Частота опроса АЦП составляла 40 Гц. Из 2048 точек, образующих массив данных, вычисляли 1024 коэффициента Фурье на полосу частот от 0 до 20 Гц. После сглаживания окном Парзена автоматически выбирался максимум в диапазоне от 8 до 15 Гц. Это значение после сравнения с калибровочным сигналом использовали для построения интерполяционных карт. Карта охватывала затылочную, теменную, заднцентральную и задневисочную области, т. е. всю заднюю часть головы.

При визуальном анализе карту условно делили на семь зон, привязанных к стандартной системе отведений 10—20: три пары симметричных зон (затылочная, теменная, заднцентральная), которые разделяла сагittalная зона. Анализ анатомических и нейрохирургических атласов позволил связать положение экстремумов значений амплитудных спектров в указанных зонах с наиболее вероятной локализацией источников, обусловливающих эти экстремумы. В случае повторного карти-
рования производили визуальное сравнение и оценку соотношения основных экстремумов.

Оценивали временну́ю стабильность МЭГ для отдельных точек ответвлений по ее огибающей и гистограммам распределения амплитуд огибающей после узкополосной фильтрации. Фильтрацию проводили прямоугольным окном шириной 0,3 Гц на основной частоте с помощью прямого и обратного Фурье-преобразования.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Экстремумы МЭГ располагались в точках, где регистрировались наиболее устойчивые высокоамплитудные веретенообразные ритмы с частотой от 9,2 до 11,8 Гц.

Число экстремумов было неодинаковым: от 2 до 7, а картина их распределения была индивидуальной и варьировала от испытуемого к испытуемому. В одном случае карта имела гомогенный характер, что было связано с низким уровнем сигнала.

Чаше всего экстремумы локализовали в теменной зоне, немного реже в затылочной, еще реже в сагittalной и заднецентрализованной. Это соотношение было справедливо как для мужчин, так и для женщин (табл. 1). Многофокусные карты чаще встречались у женщин, чем у мужчин.

Мы обнаружили, что амплитуда основных экстремумов чаще преобладает справа у женщин и слева у мужчин (табл. 2). При этом учитывали асимметрию амплитуд более 60 ФТ.

На рис. 2 представлены шесть карт распределения средних амплитуд у трех женщин (правая колонка) и трех мужчин (левая). Они демонстрируют различные варианты теменных, затылочных, сагittalных и заднецентрализованных экстремумов. Представлены два случая типичных локализаций и по одному «атипичному». Минимальное значение средней амплитуды экстремума порядка 100 ФТ, а максимальное порядка 500 ФТ.

Проверка стабильности всех карт для одного из испытуемых показала, что несмотря на некоторое изменение общей конфигурации распределения МП, основные максимумы сохраняют амплитудные соотношения (рис. 3). Повторная регистрация показала также снижение основной частоты экстремумов, что, по-видимому, связано с большей утомленностью, субъективно отмечаемой испытуемым перед началом эксперимента.

<table>
<thead>
<tr>
<th>Таблица 1</th>
<th>**Локализация экстремумов распределения максимальных значений амплитудных спектров в диапазоне от 8 до 15 Гц по зонам стандартной системы отведения ЭЭГ 10—20</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Зоны</td>
<td>Мужчины</td>
<td>Женщины</td>
</tr>
<tr>
<td>Затылочная</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Теменная</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Прецентральная</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Сагittalная</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Таблица 2</th>
<th>Преобладание латеральных экстремумов максимальных значений амплитудных спектров в диапазоне от 8 до 15 Гц в зависимости от пола испытуемых</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Латерализация</td>
<td>Мужчины</td>
<td>Женщины</td>
</tr>
<tr>
<td>Правосторонняя</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Левосторонняя</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Отсутствует</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Всего испытуемых</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

946
Рис. 2. Варианты распределения средних амплитуд альфа-ритма. Слева — три карты испытуемых мужчин, справа — женщин. Крестик — точки измерения магнитного поля. Расстояние между отведениями 2—2,5 см. Пунктир — средняя линия головы, овальная метка — затылочный бугор.

Узкополосная фильтрация МЭГ значительно снижала вариабельность кривой. На частотах, близких или совпадающих с пиком спектра мощности, можно было наблюдать участки устойчивых альфа-колебаний в течение нескольких секунд. Переходы от одной амплитуды к другой происходили за несколько миллисекунд и совпадали с началом или окончанием веретенообразной активности на исходной кривой. На гистограммах распределения амплитуды присутствовало на разных частотах от одной до трех хорошо различимых мод, которые убывали с ростом амплитуды. Моды исчезали на тех частотах, где альфа-активность не выявлялась спектральным анализом.
Рис. 4. Узкополосная фильтрация МЭГ у испытуемой Д. К. А: слева — распределение амплитуд отгибающей частотных составляющих альфа-ритма МЭГ, процент к всей эпохе анализа (50 с), от точки в затылочной области; справа — от симметричной точки. Б — фрагмент фильтрованной в полосе от 9,4 до 9,7 Гц кривой со стабильной амплитудой и ее огибающая

На рис. 4 показаны распределения амплитуд отгибающей после узкополосной фильтрации в нескольких частотных диапазонах для двух симметричных точек у одной испытуемой, а также демонстрируется участок фильтрованной кривой МЭГ от одной из точек, где хорошо представлены все амплитуды, отражающие три моды распределения.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Индивидуальная вариабельность полученных нами карт может указывать на различные уровни функциональной активности мозга у разных испытуемых. Однако эти изменения могут лишь частично объяснить такое разнообразие. Ясно, что полученные карты отражают активность самых мощных и устойчивых источников. Менее мощные и менее стабильные наряду с нестабильностью вносят искажения в дипольное распределение поля. Повторное картирование показало, что средняя амплитуда источников и их стабильность подлежит положительно скорректированы. Это может быть обусловлено тем, что мощные источники локализуются в наиболее глубоких бороздах мозга, что придает им устойчивость, и их динамика незначительно отражается на изменениях величины тангентиального компонента токовых диполей. Таким образом, вариабельность карт распределения средних амплитуд у разных испытуемых можно частично объяснить индивидуальными особенностями анатомического строения мозга.

Амплитудная асимметрия, связанная с полом, позволяет предположить большую функциональную устойчивость доминирующего полушария, которое может быть выявлено с помощью МЭГ-картирования.

Анализ положения экстремумов средних амплитуд МЭГ подтверждает локализацию физических источников альфа-ритма в коре шпорной и теменно-затылочной борозд. Кроме этого, возможна активность источников на медиальной поверхности затылочных долей и в коре теменных ветвей поясной борозды, т. е. возможна регистрация альфа-ритма МЭГ от всех участков зрительной коры.

Оценка распределения амплитуд отгибающей частотных составляющих альфа-ритма МЭГ дает результаты, соотносящиеся с данными, по-
лученными по ЭЭГ у животных [2], где были обнаружены квазигармонические ритмы в альфа-диапазоне. Наличие устойчивых ритмов позволяет продолжить исследования по выявлению повторяющихся пространственных распределений альфа-ритма МЭГ.

Нельзя исключить, что обнаруженный феномен быстрых переходов от одной амплитуды альфа-ритма МЭГ к другой имеет ту же природу, что и скачкообразное изменение фазовых соотношений при одновременной регистрации МЭГ и ЭЭГ в других исследованиях [10]. «Дискретные» изменения амплитуды МЭГ можно связать с микросостояниями коры мозга, отражающими различные режимы переработки информации [8]. На уровне субстрата это сопровождается изменением плотности тока или площади источника в коре.

Выводы

1. Картирование средних амплитуд МЭГ показало индивидуальные особенности распределений альфа-ритма в задних отделах головы.
2. Положение экстремумов средних значений МЭГ не противоречит локализации источников альфа-ритма МЭГ в шпорной и теменно- затылочных бороздах, а также позволяет предположить их локализацию в продольной и теменной ветвях лобной борозды.
3. Выявлена латеральная асимметрия экстремумов средних амплитуд альфа-ритма МЭГ, связанная с полом.
4. Показана относительная устойчивость во времени карт распределения средних амплитуд альфа-ритма МЭГ.
5. При узкополосной фильтрации МЭГ обнаружена многоамплитудность гистограмм распределения амплитуд огибающей частотных составляющих альфа-ритма МЭГ.
6. Показана возможность выявления устойчивых по амплитуде в течение нескольких секунд и повторяющихся колебаний МЭГ в диапазоне альфа-ритма.

Список литературы

Институт высшей нервной деятельности
и нейрофизиологии Академии наук СССР.
Москва

Поступила в редакцию
16.IV.1990
Принята в печать
10.V.1990

949