ФРЕЙМАН СОФЬЯ ВЛАДИМИРОВНА

НАРУШЕНИЯ ФУНКЦИОНИРОВАНИЯ СТРЕСС-РЕАЛИЗУЮЩИХ СИСТЕМ, АССОЦИИРОВАННЫЕ С ТРЕВОЖНО-ДЕПРЕССИВНЫМ ПОВЕДЕНИЕМ: ТРАНСЛЯЦИОННОЕ ИССЛЕДОВАНИЕ

03.03.01 – Физиология

АВТОРЕФЕРАТ

диссертации на соискание учёной степени кандидата биологических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте высшей нервной деятельности и нейрофизиологии Российской академии наук (ФГБУН ИВНД и НФ РАН) и Государственном бюджетном учреждении здравоохранения города Москвы «Научно-практический психоневрологический центр им. З.П. Соловьева» Департамента здравоохранения города Москвы (ГБУЗ «НПЦ Психоневрологии им. З.П. Соловьева» ДЗМ).

Научный руководитель: Онуфриев Михаил Валериевич, доктор биологических наук, ведущий научный сотрудник лаборатории функциональной биохимии нервной системы ИВНД и НФ РАН.

Официальные оппоненты:

Воронина Татьяна Александровна, доктор медицинских наук, профессор, заведующая лабораторией психофармакологии ФГБУН НИИ фармакологии им. В.В. Закусова.

Рыбникова Елена Александровна, доктор биологических наук, заместитель директора по научной работе, заведующая лабораторией регуляции функций нейронов мозга ФГБУН Института физиологии им. И.П. Павлова РАН.

Ведущая организация: Московский Государственный Университет им. М.В. Ломоносова, биологический факультет, кафедра физиологии человека и животных.

Защита состоится 17 февраля 2021 г., в 14.00 на заседании Диссертационного совета Д 002.044.02 при Институте Высшей Нервной Деятельности и Нейрофизиологии РАН по адресу: 117485, Москва, ул. Бутлерова 5А.

С диссертацией можно ознакомиться в библиотеке Федерального государственного бюджетного научного учреждения «Институт Высшей Нервной Деятельности и Нейрофизиологии РАН», а также на сайте ИВНД: https://ihna.ru

Автореферат разослан « » 20_	Γ.
Ученый секретарь диссертационного совета,	repyl
д.б.н. Иерусалимский В.Н.	

1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы и степень ее разработанности. Стресс ассоциирован со многими хроническими заболеваниями, например, с аутоиммунными заболеваниями, астмой, диабетом, язвой желудка, атеросклерозом, с психическими заболеваниями. Увеличение риска развития ассоциированных со стрессом заболеваний может происходить в результате хронического стресса, а также вследствие изменения под действием аллостатической нагрузки в раннем онтогенезе систем, напрямую или опосредованно вовлеченных в реализацию стрессорного ответа. Изучение воздействия неонатального стресса на функционирование гипоталамо-гипофизарно-надпочечниковой системы (ГГНС), систем нейротрофических факторов и провоспалительных цитокинов во взрослом возрасте особенно актуально для расстройств депрессивного спектра из-за отсутствия точного представления о механизмах развития этой группы заболеваний. Кроме того, актуальность изучения расстройств депрессивного спектра также обусловлена их социальной значимостью ввиду широкой распространенности и раннего возраста начала заболевания. По оценкам ВОЗ показатель DALY (годы жизни, скорректированные по нетрудоспособности) для расстройств депрессивного спектра за последнее десятилетие увеличился с 4,4% (по отчету ВОЗ за 2000 год) до 7.5% (по отчету ВОЗ за 2017 год). В настоящее время теория развития депрессии с наибольшей доказательной базой основана на дисфункции моноаминергических систем, и, соответственно, терапия включает ингибиторы обратного серотонина, норадреналина, ингибиторы захвата моноаминоксидазы. Тем не менее, проводимая терапия у 30% пациентов оказывается не эффективной, а устойчивой ремиссии не удается достичь в более чем 60% случаев (O'Reardon et al. 2000; Oquendo et al. 1999; Smith et al. 2002; Casacalenda et al. 2002; Thase et al. 2001). В связи с этим представляется крайне актуальным выяснение точных механизмов депрессивных нарушений для разработки более эффективных методов лечения и поиска новых фармакологических мишеней лечения.

Цель исследования. Целью данной работы является исследование функционального статуса стресс-реализующих систем при тревожном и депрессивноподобном поведении у экспериментальных животных и пациентов с тревожнодепрессивной симптоматикой.

Задачи исследования. Для достижения этих целей были поставлены следующие задачи:

- 1. сравнить классическую модель индукции депрессивно-подобного поведения хронический непредсказуемый стресс (ХНС) и модель депрессивно-подобного поведения, вызванного неонатальным провоспалительным стрессом (НПС);
- 2. исследовать функциональное состояние ГГНС (кортикостерон), систем провоспалительных цитокинов (ИЛ-6, ИЛ-1β, ФНОα) и нейротрофинов (BDNF, NGF) в крови и отделах мозга крыс после НПС;
- 3. исследовать функциональное состояние ГГНС (кортикостерон), систем провоспалительных цитокинов (ИЛ-6, ИЛ-1β, ФНОα) и нейротрофинов (BDNF, NGF) в крови и отделах мозга крыс с тревожным и депрессивно-подобным поведением после НПС и субхронического стрессорного воздействия;
- разработать психо-эмоциональный стресс-тест, исследовать функциональное состояние ГГНС (кортизол, АКТГ), систем провоспалительных цитокинов (ИЛ-6, ИЛ-1β, ФНОα) и нейротрофинов (BDNF) у пациентов с тревожно-депрессивной симптоматикой (ТДС) в исходном состоянии и после острого психо-эмоционального стрессорного воздействия.

Научная новизна. В настоящей работе мы, во-первых, охарактеризовали модель депрессии на взрослых крысах после НПС, индуцированного инъекцией бактериального липополисахарида (ЛПС) в неонатальном периоде, по уровню биохимических показателей трех стресс-реализующих систем в сыворотке крови и отделах мозга. Впервые показали нарушение функционирования ГГНС и системы нейротрофинов после НПС, что проявилось у этих животных во взрослом возрасте в повышении уровня кортикостерона в коре больших полушарий мозга (коре БП), а также в снижении уровня BDNF в крови и коре БП. Во-вторых, мы впервые выявили ряд изменений, проявляющихся у крыс после НПС в ответ на дополнительный стрессор в виде поведенческих тестов соответствовавший по длительности субхроническому стрессу. У крыс после НПС на появления тревожного и депрессивно-подобного поведения отсутствовало фоне индуцируемое субхроническим стрессом повышение содержания кортикостерона в сыворотке крови и коре БП, выявляемое в контрольной группе. Кроме того, мы показали, что в результате субхронического стресса у крыс после НПС снижается содержание NGF гиппокампе. Также были получены данные, указывающие на нарушения функционировании системы провоспалительных цитокинов мозге после субхронического стресса на уровне экспрессии мРНК гена ИЛ-6. Кроме того, в рамках данной работы мы экспериментально показали большую чувствительность теста на предпочтение раствора сахарозы по сравнению с тестом вынужденного плавания для подтверждения депрессивно-подобного поведения у крыс.

В клинической части работы нашей основной задачей было смоделировать стрессорную реакцию у пациентов с тревожно-депрессивной симптоматикой (ТДС) и исследовать ее по показателям в крови, что впервые было проделано для различных стресс-реализующих систем одновременно. В рамках данной работы мы разработали стрессогенный тест, причем ключевым фактором для подбора задач была максимально слабая психо-эмоциональная нагрузка, при которой индуцируются эффекты стресса. С использованием разработанного нами психо-эмоционального стресс-теста, мы показали, что из трех провоспалительных цитокинов (ФНОα, ИЛ-6, ИЛ-1β) только уровень ИЛ-6 увеличивается после умеренного психо-эмоционального стресса в крови у пациентов с ТДС и у здоровых испытуемых. Мы впервые продемонстрировали большую чувствительность к психо-эмоциональному стрессу людей с ТДС по уровню глюкозы в крови в сравнении со здоровыми испытуемыми.

Теоретическая и практическая значимость. Теоретическая значимость экспериментальной части данной работы заключается в расширении современных представлений о влиянии провоспалительной индукции в раннем постнатальном периоде на формирование тревожного и депрессивно-подобного поведения во взрослом возрасте. Показано, что подобные изменения в поведении, вызванные НПС, сопряжены с нарушениями в функционировании ГГНС, систем провоспалительных цитокинов и нейротрофических факторов.

Практическая значимость работы заключается в разработке простого и применимого для пациентов с ТДС стрессорного теста. В настоящее время в клинических условиях чувствительность к стрессогенным воздействиям оценивают по изменению содержания кортизола в крови или слюне. Тем не менее, другим потенциально стрессчувствительным показателем является содержание глюкозы в крови. Таким образом, мы показали валидность применения простого и доступного маркера чувствительности к стрессорному воздействию у пациентов с ТДС, так как в условиях российских стационаров определение глюкозы в крови значительно более доступно, чем определение кортизола.

Положения, выносимые на защиту.

1. Неонатальный провоспалительный стресс вызывает появление тревожного и депрессивно-подобного поведения у взрослых крыс, которое сопровождается дисфункцией ГГНС и системы нейротрофических факторов, а также нарушением физиологической реакции на субхроническое стрессорное воздействие со стороны этих систем;

- 2. Тревожно-депрессивная симптоматика у людей сопровождается нарушением функционирования ГГНС и системы провоспалительных цитокинов, а также изменением реактивности в ответ на умеренное психо-эмоциональное стрессорное воздействие.
- 3. Общим для экспериментальной и клинической тревожно-депрессивной симптоматики является исходная дисфункция основной стресс-реализующей системы ГГНС и, как следствие, нарушение физиологической реакции на стрессор.

Степень достоверности и апробация результатов. Достоверность полученных результатов определяется значительным и достаточным для статистического анализа числом наблюдений, использованием в работе современных молекулярно-биохимических методов анализа, применением адекватных методов статистического анализа.

Диссертация апробирована и рекомендована к защите на расширенном заседании лаборатории функциональной биохимии нервной системы, лаборатории условных рефлексов и физиологии эмоций и лаборатории молекулярной нейробиологии ФГБУН ИВНД и НФ РАН. Материалы диссертации были представлены на: на XIX и XX Школах-конференциях молодых ученых ИВНД и НФ РАН, Москва, (27–28.10.2015, 31.10 – 1.11.2016).

Публикации. По теме диссертации опубликовано 7 печатных работ, в том числе 5 статей в рецензируемых журналах, рекомендованных Высшей аттестационной комиссией при Министерстве образования и науки Российской Федерации и международных журналах, индексированных в базе Web of Science/Scopus.

Личный вклад автора. Автор участвовала в разработке дизайна и протоколов исследования, постановке задач и обосновании выводов. Автор принимала участие в проведении поведенческого тестирования, подготовке биологического материала, анализе экспрессии мРНК провоспалительных цитокинов в структурах мозга крыс, а также в сборе и оформлении клинических данных, проведении психо-эмоционального стресс-теста с испытуемыми клинической части работы. Самостоятельно был проведен биохимический и иммунохимический анализ структур мозга и сыворотки крови крыс. Самостоятельно проведены обработка и статистический анализ полученных данных.

Структура и объем диссертации. Диссертация изложена на 120 страницах машинописного текста, содержит 3 таблицы и иллюстрирована 30 рисунками. Диссертация состоит из следующих разделов: введение, обзор литературы, описание материалов и методов, результаты исследования, обсуждение результатов исследования, заключение и выводы, список сокращений, список литературы. Библиографический указатель содержит 9 отечественных и 293 зарубежных источников литературы.

2. МАТЕРИАЛЫ, МЕТОДОЛОГИЯ И МЕТОДЫ ИССЛЕДОВАНИЯ

Моделирование депрессии. В экспериментальной части нашей работы были использованы 113 крыс линии Wistar: 52 для моделирования депрессии с помощью хронического непредсказуемого стрессорного воздействия (ХНС) и 61 с использованием НПС.

ХНС (Рисунок 1). Перед началом эксперимента проводили двухдневный тест вынужденного плавания и тест на потребление раствора сахарозы (1.5%) и для дальнейшей работы отбирали животных со средним уровнем потребления раствора сахарозы. Далее животных делили случайным образом на группу ХНС и контрольную группу. Крыс группы ХНС помещали в индивидуальные полипропиленовые клетки и в течение 8 недель подвергали непредсказуемым стрессорным воздействиям (Stepanichev M., 2016). В конце 1-6 недели всех крыс тестировали на потребление раствора сахарозы. В конце 7-ой недели крыс тестировали на предпочтение раствора сахарозы в течение 1 часа, а в конце 8-ой недели - в течение 48 часов. Затем проводили двухдневный тест «вынужденное плавание» (точка «после ХНС»), после чего крыс выводили из эксперимента.

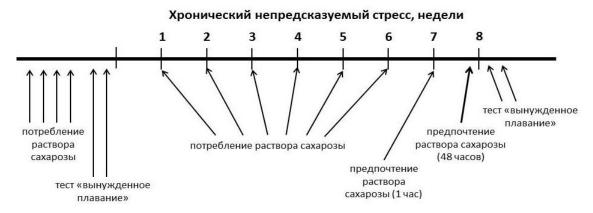


Рисунок 1. Схема поведенческих тестов с животными для выявления депрессивноподобного поведения, индуцированного XHC.

<u>НПС</u> (Рисунок 2). НПС вызывали двукратной инъекцией бактериального липополисахарида (ЛПС) в дозе 50 мкг/кг на 3 и 5 постнатальные дни. Контрольным животным вводили эквивалентный объем физиологического раствора. Через 30 дней после инъекций (*ювенильный* возраст) 19 животных тестировали на выявления тревожного и депрессивно-подобного поведения, до и после поведенческих тестов забирали кровь из хвостовой вены для биохимических исследований. Через 90 дней (*взрослые* животные) у половины из оставшихся крыс каждой группы тестировали поведение в тестах «открытое поле», «приподнятый крестообразный лабиринт», «выработка условно-рефлекторного

замирания», «предпочтение раствора сахарозы», «вынужденное плавание». То есть, взрослые животные каждой группы были разделены на 2 подгруппы (Таблица 1).

Таблица 1 - Список групп при моделировании и оценки тревожного и депрессивно-

подобного поведения у крыс

Группа	Неонатальный период	Возраст 3 мес.
Контроль	Инъекция NaCl	Без поведения
НПС	Инъекция ЛПС	Без поведения
Контроль+стресс	Инъекция NaCl	Поведенческие тесты
НПС+стресс	Инъекция ЛПС	Поведенческие тесты

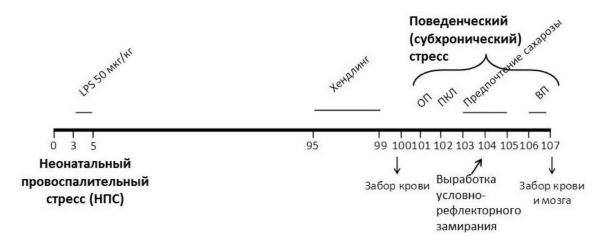


Рисунок 2. Схема манипуляций для формирования и оценки тревожного и депрессивно-подобного поведения у крыс в возрасте 3 месяца.

Подготовка биоматериала. После окончания второго этапа теста «вынужденное плавание» крыс декапитировали. Время между окончанием теста и декапитацией составляло 30-40 минут. После декапитации получали сыворотку крови и выделяли структуры мозга (кору больших полушарий (кора БП), фронтальную кору (ФК), гиппокамп) из каждого полушария отдельно. Выделенные структуры гомогенизировали в 20 мМ HEPES (рН 7,5), содержащем ингибиторы протеаз (по 10 мг/мл апротинина, пепстатина А и 1 мМ фенилметилсульфонилфторида), затем центрифугировали 30 мин при 13000g при 4°C для получения супернатанта.

Биохимические И молекулярно-биологические методы исследования. Содержание кортикостерона определяли в сыворотке крови и структурах мозга крыс с помощью коммерческих наборов для конкурентного иммуноферментного анализа (DRG, Германия). Глюкозу в плазме крови крыс определяли с помощью коммерческого реактива «Glucose» (BioSystems, Испания). Нейротрофические факторы BDNF и NGF определяли в сыворотке крови (только BDNF) и структурах мозга крыс с помощью наборов для неконкурентного иммуноферментного анализа (Millipore, Германия). Содержание ИЛ-1β, ИЛ-6, ФНОα в сыворотке крови и структурах мозга крыс определяли с помощью наборов для мультиплексного иммуноферментного анализа (Bio-Plex Pro Rar Cytokine Th1/Th2 Assay, Bio-Rad, США). Определение уровней экспрессии мРНК ИЛ1β, ИЛ6, ФНОα в структурах мозга крыс проводили с помощью ПЦР-анализа в реальном времени. Для расчетов использовали относительный количественный анализ экспрессии генов (RQ, ген сравнения — гипоксантин-гуанин-фосфорибозилтрансфераза), праймеры синтезировали в НПО «Синтол» (Москва).

Работа с людьми: критерии отбора в группы испытуемых. В клинической части данной работы приняли участие пациенты психоневрологического стационара и здоровые добровольцы (Таблица 2). В группу испытуемых с тревожно-депрессивной симптоматикой (ТДС) вошли пациенты клинического стационара, с диагнозами по МКБ10 в рубриках F32.10, F32.11, F33.10, F33.11, F40.x-F45.x. Все манипуляции, связанные с настоящим исследованием проводили после получения информированного согласия от испытуемых.

Таблица 2 - Характеристики выборки клинической части работы

Группа	Пол,	Средний	Средний балл по	Средний балл по
	количество	возраст (CI)	Шкале	шкале Спилбергера-
	м/ж		Гамильтона	сумма субшкал
			(95% CI)	(95%CI)
Контроль	19/25	30 (28.9-32.3)	1.0 (0.6-1.5)	72.3 (67.7-76.9)
ТДС	30/44	31 (29.4-32.9)	17.4 (16.1-18.6)	106.9 (102.2-111.5)

Психо-эмоциональный стресс-тест. Испытуемые проходили стресс-тест, дающий психо-эмоциональную нагрузку с умеренным стрессорным эффектом. В процедуре тестирования использовали черно-белые таблицы Шульте в условиях ограниченного времени и постоянной смены стимульного материала. Каждого испытуемого тестировали отдельно. Процедура стресс-теста занимала примерно 5 минут. Перед началом, а также через час после окончания стресс-теста у испытуемых забирали кровь из вены для клинического, биохимического и иммунохимических анализов (Рисунок 3).

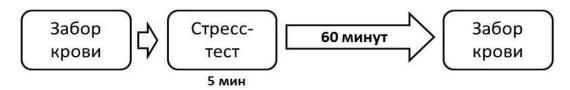
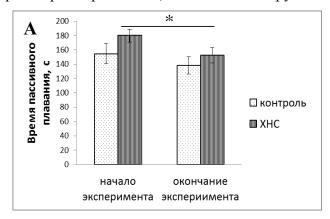


Рисунок 3. Схема забора крови у пациентов до и после стресс-теста.

Биохимические методы анализа. В рамках данной работы мы располагали данными стандартных клинического и биохимического анализов крови. Кроме того определяли содержание кортизола, АКТГ, провоспалительных цитокинов ИЛ-6, ИЛ-1β, ФНОα, нейротрофина BDNF. Для определения этих показателей использовали коммерческие наборы для иммуноферментного анализа содержания кортизола (Весктан Соштан), АКТГ (Віотегіса, Германия), ВDNF(Міllіроге, Германия), цитокинов ИЛ-6, ИЛ-1β, ФНОα (Вектор-Бест, Россия).


Статистическая обработка данных. Для оценки межгрупповых различий мы использовали тест Стьюдента при оценке показателей с нормально распределенными значениями или U-критерий Манна-Уитни, если данные не соответствовали нормальному распределению (проверку проводили по тесту Колмогорова-Смирнова). экспериментальной части работы попарное сравнение групп по U-критерию Манна-Уитни проводили после подтверждения наличия различий в выборке с помощью теста Краскела-Уоллиса. В клинической части работы для оценки достоверности стресс-индуцированных изменений применяли t-тест для зависимых переменных. Для оценки динамики поведенческих показателей в эксперименте с XHC использовали метод ANOVA repeated measures. На графиках в разделе «Результаты и обсуждения» представлены средние значения показателей по группам, в качестве ошибок на гистограммах отображена стандартная ошибка среднего (SEM). В заключение клинической части работы провели оценку каждого из исследованных показателей как потенциального маркера тревожнодепрессивной симптоматики с помощью множественной логистической регрессии.

3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

3.1. Сравнение валидности тестов «вынужденное плавание» и «предпочтение раствора сахарозы» на модели депрессии, индуцированной ХНС.

Тест «вынужденное плавание» является одним из самых популярных тестов для выявления депрессивно-подобного поведения у крыс: повышенное время пассивного плавания на второй день трактуется как «поведение отчаяния» (Porsolt et al. 1976). Другой популярный тест для выявления депрессивно-подобного поведения у крыс — тест на предпочтение раствора сахарозы. Отсутствие предпочтения раствора сахарозы обычной

воде трактуется как ангедония (Willner et al. 1987; Papp et al. 1991). Для сравнения этих тестов, формирование депрессивно-подобного поведения проводили с помощью ХНС. Мы не выявили разницу во времени пассивного плавания между контрольными животными и животными после ХНС. Тем не менее, у крыс после ХНС время пассивного плавания было достоверно ниже, чем у тех же животных до ХНС (Рисунок 4A). В конце последней недели ХНС мы провели тест на предпочтение раствора сахарозы с длительной экспозицией раствора: крысы контрольной группы в большей степени предпочитают раствор сахарозы воде, чем животные группы ХНС (Рисунок 4Б).

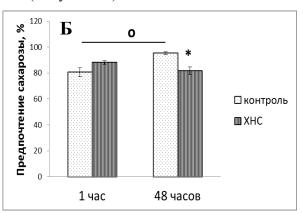


Рисунок 4. А - время пассивного плавания крыс в тесте "вынужденное плавание" до и после хронического непредсказуемого стресса (ХНС); Б - потребление раствора сахарозы в процентах от общего потребления жидкости. * - различие между тестами для одних и тех же животных, p < 0.05, тест Вилкоксона для зависимых переменных; \mathbf{o} - внутригрупповые различия между разными тестами на предпочтение раствора сахарзы, p < 0.05, U-тест Манна-Уитни.

Таким образом, сравнив поведенческие тесты «вынужденное плавание» и «предпочтение раствора сахарозы» на модели ХНС у крыс, мы обнаружили, что тест на предпочтение раствора сахарозы является более чувствительным и, возможно, более валидным для подтверждения формирования депрессивно-подобного поведения.

3.2. Формирование тревожного и депрессивно-подобного поведения у крыс после НПС

Оценка тревожного и депрессивно-подобного поведения у крыс после НПС. У ювенильных (1 мес) крыс после НПС детектировали тревожное поведение в тесте «открытое поле», но не в тесте «приподнятый крестообразный лабиринт», однако в тесте «вынужденное плавание» не выявили признаки депрессивно-подобного поведения. Взрослые (3 мес) крысы после НПС в тесте «приподнятый крестообразный лабиринт» больше времени проводили в закрытых рукавах; в тесте «открытое поле» - меньше времени проводили в центре; снижение предпочтения раствора сахарозы выявили у животных после НПС при тестировании после стрессорного воздействия; в тесте

«вынужденное плавание» взрослые крысы после НПС демонстрировали увеличение времени пассивного плавания. Таким образом, с помощью тестов «открытое поле», «приподнятый крестообразный лабиринт», «предпочтение раствора сахарозы» и «вынужденное плавание», мы выявили тревожные и депрессивно-подобные нарушения поведения у взрослых крыс после НПС, т.е. показали, что провоспалительный стресс, индуцированный двукратной внутрибрюшинной инъекцией ЛПС новорожденным крысятам, привел к формированию устойчивого тревожного и депрессивно-подобного поведения у взрослых животных.

Влияние НПС на функциональное состояние ГГНС, систем провоспалительных цитокинов и нейротрофинов у взрослых крыс. Функциональное состояние ГГНС, систем нейротрофических факторов и провоспалительных цитокинов, соответствующее исходному состоянию, определяли у групп животных, не проходивших тестирование поведения. Такие же показатели определяли у крыс после поведенческих тестов. Как известно, многие из использованных поведенческих тестов обладают в разной степени выраженным стрессорным эффектом, то есть группы животных, прошедшие эти тесты, суммарно были подвергнуты субхроническому стрессу.

У крыс после НПС детектировали повышенное содержание кортикостерона в сыворотке крови по сравнению с группой контроля (Рисунок 6). Повышенный уровень кортикостерона в крови взрослых животных, перенесших НПС, многократно показывали ранее: это связано с гиперфункцией надпочечников, так как у крыс после НПС повышена частота и амплитуда выбросов кортикостерона в кровь (Shanks et al. 2000). В настоящей работе мы впервые показали, что в исходном состоянии содержание кортикостерона у крыс после НПС повышено также в коре БП (Рисунок 6).

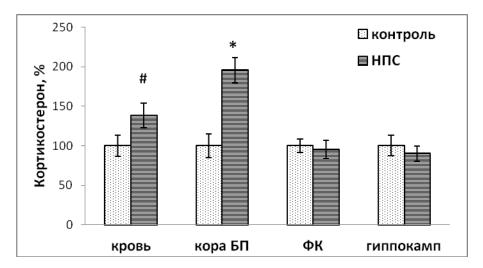
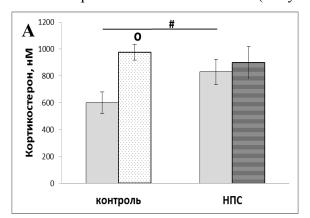



Рисунок 5. Содержание кортикостерона в сыворотке крови и структурах мозга взрослых крыс. *, # отличие животных с НПС от контрольных, * p=0,001, # p=0,08 по *U*-критерию Манна-Уитни.

Нормальной реакцией на стрессор со стороны ГГНС является повышение уровня кортикостерона в крови. У крыс контрольной группы после субхронического стресса содержание кортикостерона в сыворотке крови повышено по сравнению с подгруппой крыс, у которых не тестировали поведение (Рисунок 7А). У крыс после НПС при изначально более высоком, чем у контрольных животных, уровне кортикостерона в сыворотке крови, отсутствовали различия в значениях этого показателя между подгруппами животных без тестирования и после тестирования поведения. Такой же результат получили при измерении уровня кортикостерона в коре БП у контрольных и экспериментальных животных (Рисунок 7Б).

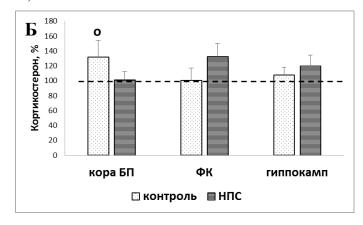
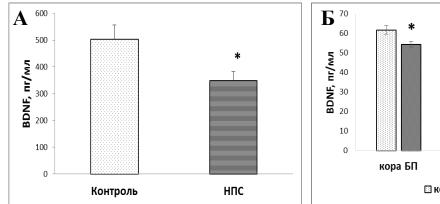



Рисунок 6. Содержание кортикостерона в сыворотке крови (A) и структурах мозга (Б) взрослых крыс, перенесших НПС и субхронический стресс. На рис. А серым цветом в обеих группах обозначены подгруппы животных, не проходивших тестирование поведения. На рис. Б данные представлены в процентном отношении к среднему уровню соответсвующих подгрупп без тестирования поведения. \mathbf{o} - различия между уровнем показателя у группы до и после стрессогенных тестов, p < 0.005 по U-критерию Манна-Уитни. # - отличие животных после НПС от контрольных, p = 0.08 по U-критерию Манна-Уитни.

Относительно характера нарушений функционирования ГГНС у взрослых крыс после НПС в литературе имеются противоречащие друг другу данные. Во многих работах показана гиперактивация ГГНС в ответ на острое стрессорное воздействие (Hodgson, Knott, and Walker 2001; Shanks et al. 2000; А. К. Walker, Nakamura, and Hodgson 2010). Некоторые авторы выявляют повышенный уровень кортикостерона в крови у крыс после НПС в исходном состоянии и гипоактивацию ГГНС в ответ психо-эмоциональное стрессорное воздействие разной модальности (Nilsson et al. 2002; Adam K. Walker et al. 2011). Мы не исследовали содержание кортикостерона в сыворотке крови в динамике после начала тестирования поведения. Тем не менее, полученный результат позволяет с уверенностью говорить о нарушении функционирования ГГНС как в исходном состоянии, так и в условиях субхронического стресса, причем данные нарушения проявляются на системном уровне и в ЦНС.

У взрослых крыс после НПС детектировали более низкий уровень BDNF в сыворотке крови и коре БП по сравнению с группой контроля (Рисунок 8). Уровень NGF в исследованных регионах мозга крыс после НПС не отличался от уровня этого нейротрофина у крыс контрольной группы. Понижение уровня BDNF хорошо укладывается в современные представления о патогенезе тревожно-депрессивных нарушений. Снижение уровня BDNF в крови выявляли у пациентов с клинической депрессией (Shimizu et al. 2003), а также в многочисленных моделях депрессии, включая материнскую депривацию в неонатальный период (Cirulli et al. 2009).

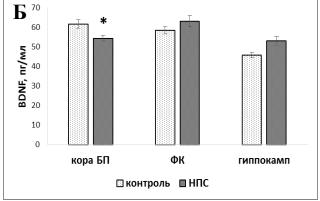
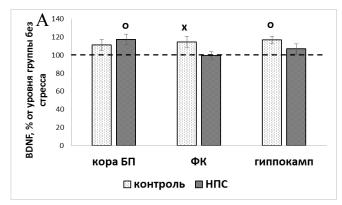



Рисунок 7. Содержание BDNF в сыворотке крови (A) и в структурах мозга (Б) взрослых крыс. * отличие животных после НПС от контрольных, p < 0.01 по U-критерию Манна-Уитни.

В сыворотке крови взрослых крыс не выявили различий в уровне BDNF между подгруппами без тестирования и после субхронического стресса. В структурах мозга содержание BDNF возросло в подгруппах крыс после тестирования поведения: в

контрольной группе уровень BDNF был выше во всех исследованных структурах мозга (статистически значимые различия в ФК и гиппокампе); в группе НПС уровень BDNF был повышен только в коре БП (Рисунок 9A). Содержания NGF в гиппокампе крыс после НПС было понижено в подгруппе после субхронического стресса (Рисунок 9Б).

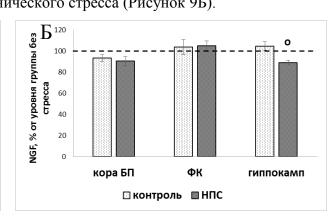


Рисунок 8. Содержание BDNF (A) и NGF (Б) в структурах мозга взрослых крыс после НПС и субхронического стресса. о, x - внутригрупповые различия между уровнем показателя до стрессогенных тестов и после них, o - p<0,05, x - p<0,1 по U-критерию Манна-Уитни.

Показано, что стрессорное воздействие, провоспалительная индукция, повышенное содержание глюкокортикоидов вызывают снижение содержания BDNF и NGF в крови и ЦНС (Кита et al. 2004; Manni et al. 1998; Murakami et al. 2005; Nowacka et al. 2015; Vaidya, Terwilliger, and Duman 1999). В частности, у крысят материнская депривация в неонатальнй период сопровождается снижением содержания BDNF (Кита et al. 2004; Roceri et al. 2004) и NGF (Manni et al. 1998) в коре БП и гиппокампе. Снижение уровня этих нейротрофинов приводит к апоптотической гибели нейронов и нарушению формирования нейрональных связей (Watanabe, Gould, and McEwen 1992). Если снижение содержания нейротрофических факторов происходит в критический для развития мозга период, оно может вызвать необратимые последствия и в конечном итоге привести к структурно-функциональным нарушениям. В нашем случае мы, по-видимому, имеем дело с последствиями такого воздействия: нервная система крыс после НПС не способна в полном объеме противостоять стрессу, что отражается в недостаточном биосинтезе BDNF структурами мозга.

Исходный уровень ИЛ-1β, ИЛ-6, ФНОα в крови и структурах мозга был одинаковым у контрольных группы и группы НПС. После субхронического стресса содержание всех исследованных цитокинов в крови животных обеих групп возросло в равной степени. Тем не менее, у крыс после НПС выявили увеличение экспрессии мРНК ИЛ-6 во фронтальной коре после субхронического стресса. Этот результат указывает на

возможные нарушения в функционировании системы провоспалительных цитокинов в мозге крыс после НПС и субхронического стресса.

3.3. Функционально-биохимические нарушения у людей с ТДС в исходном состоянии и после стресса.

В рамках этого исследования мы располагали данными клинического и биохимического анализов крови пациентов, а также проводили ИФА уровня кортизола, АКТГ, провоспалительных цитокинов и нейротрофина BDNF в крови. Состояние всех этих показателей при клинической депрессии подробно исследовано и опубликовано в многочисленных работах, наши данные полностью согласуются с данными литературы. В рамках нашего трансляционного исследования мы хотели максимально приблизить экспериментальные и клинические условия для сравнения полученных результатов. Очевидно, что воссоздать эффект субхронического стресса, которому подвергались крысы, у пациентов с тревожно-депрессивной симптоматикой не представляется возможным. В то же время наиболее релевантным типом стрессорного воздействия у людей в настоящий момент является психо-эмоциональное стрессорное воздействие. Хотя моделирование психо-эмоционального стрессорного воздействия на грызунах возможно (Гусакова, Городецкая, 2019), оно не достаточно охарактеризовано. Поэтому для клинической части работы мы выбрали умеренное психо-эмоциональное стрессорное воздействие, понимая, что полноценное сравнение реакции на стрессор различной длительности и модальности невозможно. Для всех показателей, которые мы исследовали в сыворотке крови людей в состоянии спокойного бодрствования, мы также анализировали стрессорную реакцию: повторный забор крови для анализа осуществляли через 60 минут после умеренного психо-эмоционального стрессорного воздействия (стресс-теста). Через час после стресс-теста уровень глюкозы был достоверно повышенным в группе пациентов с ТДС, в группе здоровых испытуемых статистически значимых изменений не выявили (Рисунок 10). По-видимому, повышенный уровень глюкозы в сыворотке крови испытуемых с ТДС отражает значительную активацию САС в ответ на психо-эмоциональное стрессорное воздействие. Причем такая же стрессорная нагрузка не вызвала значительного ответа со стороны САС здоровых добровольцев (отсутствие повышения глюкозы). Таким образом, мы показали, что испытуемые с ТДС обладают повышенной чувствительностью к психо-эмоциональному стрессу.

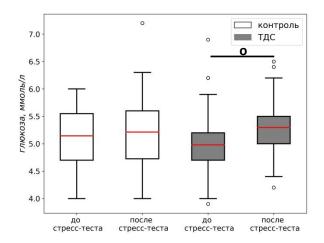


Рисунок 9. Содержание глюкозы в сыворотке крови до и после (через 1 ч) острого психо-эмоционального стрессорного воздействия у здоровых испытуемых и пациентов с T / C. о — отличие пост-стрессорного уровня показателя от уровня до стресса. о — p = 0,0001 по t-тесту для зависимых переменных. Поперечной чертой обозначен средний уровень показателя, в качестве ошибок — разброс значений в выборках.

Повышение содержания кортизола (Sachar et al. 1973) и АКТГ (Mortola et al. 1987) в сыворотке крови при депрессии впервые было показано в 70-80-е годы прошлого века. Однако, в настоящее время нет однозначной позиции относительно нарушений стрессорной реакции при тревожно-депрессивных состояниях (Burke et al. 2005; Miller et al. 2005, Takahashi et al. 2005; Young et al. 2000). В нашем исследовании мы показали повышенное содержание кортизола и АКТГ у пациентов с ТДС в состоянии спокойного бодрствования. Оценить индуцируемые стрессом изменения содержания этих показателей в рамках нашего исследования не удалось по техническим причинам. Заборы крови проводили в утренние часы (в 8-9 утра), когда происходит наиболее резкое снижение изменения содержания данных гормонов в сыворотке крови. Соответственно, не было возможности разделить влияние стресса и циркадианные изменения.

Содержание нейротрофического фактора BDNF в сыворотке крови не различалось у пациентов с ТДС и здоровых испытуемых, также не различалась реакция на острый психо-эмоциональный стресс в этих группах по этому показателю (Рисунок 11). Содержание провоспалительных цитокинов ФНОа и ИЛ-6 в сыворотке крови было повышено у пациентов с ТДС, в то же время не выявили повышения содержания ИЛ-1β. Через час после стресс-теста содержание провоспалительного цитокина ИЛ-6 достоверно возросло в сыворотке крови пациентов с ТДС на 7% (Рисунок 11). У здоровых испытуемых содержание ИЛ-6 после стресс-теста также увеличилось (на 10%), тем не менее, больший разброс данных не позволяет подтвердить эти изменения статистически.

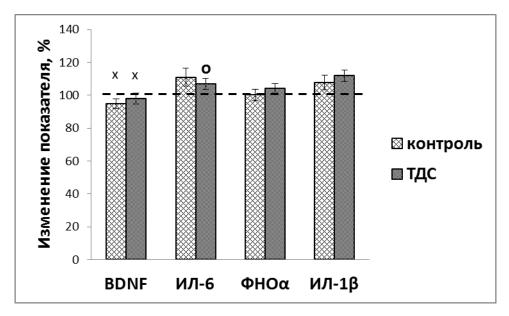


Рисунок 10. Изменение уровня BDNF и провоспалительных цитокинов ИЛ-6, Φ HO α , ИЛ-1 β в сыворотке крови в процентах от уровня этих показателей до стресстеста. Изменение показателя посчитано отдельно для каждого испытуемого, на рисунке представлены средние значения изменений по группам. \mathbf{o} , \mathbf{x} - отличие постстрессорного уровня показателя от уровня до стресса. \mathbf{o} - p<0,05, \mathbf{x} - p<0,1 по t-тесту для зависимых переменных.

Повышение уровня провоспалительных маркеров при расстройствах тревожнодепрессивного спектра было неоднократно показано ранее (Hoge et al. 2009; Miller et al. 2005; O'Brien, Scott, and Dinan 2004). Уровень циркулирующих крови провоспалительных цитокинов коррелирует с тяжестью и длительностью заболевания (Anisman and Merali 2002). Острое психо-эмоциональное стрессорное воздействие может вызывать увеличение содержания ИЛ-6 в крови у здоровых испытуемых через 75 минут после окончания стрессорной нагрузки (Brydon et al. 2004). Miller et al. (2005) не выявили изменений циркулирующих уровней ИЛ-6 и ФНОα после психо-эмоционального стрессорного воздействия ни у здоровых испытуемых, ни у людей с тревожнодепрессивной симптоматикой. Тем не менее, в этом исследовании продукция провоспалительных цитокинов клетками иммунной системы достоверно возросла после стрессорного воздействия – равнозначно в обеих группах. В исследовании на людях без психических расстройств продемонстрировали увеличение содержания ИЛ-6 в сыворотке крови после психо-эмоционального стрессорного воздействия у испытуемых с трудным детством (Carpenter et al. 2010). То есть, возможно, ключевую роль в нарушении функционирования системы провоспалительных цитокинов играет аллостатическое изменение этой системы в детском возрасте, но не связанное напрямую с тревожнодепрессивным состоянием во взрослом организме.

4. ЗАКЛЮЧЕНИЕ

В работе проведено исследование функциональных нарушений ГГНС, системы провоспалительных цитокинов и нейротрофических факторов у взрослых крыс, НПС. Осуществлено трансляционное сопоставление функционального перенесших состояния этих систем при тревожно-депрессивных патологиях у людей и на модели депрессии на животных. НПС вызывает функциональные и биохимические нарушения у взрослых животных, что выражается в возникновении тревожного и депрессивноподобного поведения, нарушением работы ГГНС, систем нейротрофических факторов и провоспалительных цитокинов. Некоторые нарушения в исследованных системах выявляются в исходном состоянии, а другие только при реализации стрессорного ответа. Исходный функциональный статус ГГНС и системы нейротрофинов у крыс после НПС характеризуется повышенным содержанием кортикостерона и пониженным уровнем BDNF в сыворотке крови и коре БП. Использование субхронического стресса позволило выявить наиболее значимое последствие НПС у взрослых крыс - нарушение физиологической реакции на стресс, проявившееся в отсутствии повышения уровня кортикостерона в сыворотке крови и коре БП, а также специфические изменения содержания BDNF и NGF в стресс-чувствительных регионах мозга и нарушение экспрессии мРНК ИЛ-6 в гиппокампе крыс после НПС.

У людей тревожно-депрессивная симптоматика также сопровождается нарушением состояния стресс-реализующих систем как на исходном уровне, так и после стресса. У пациентов с ТДС детектировали исходное нарушение функционирования ГГНС (повышенный уровень кортикостерона и АКТГ), системы провоспалительных цитокинов (повышенный уровень ИЛ-6 и ФНОа). Стресс-индуцируемых изменений по уровню ИЛ-1β и ФНОа в крови не наблюдали ни в контрольной группе, ни у пациентов с ТДС, а содержание ИЛ-6 в сыворотке крови увеличилось в обеих группах. Циркадианные изменения уровня кортизола и АКТГ не позволили выявить нарушение стрессорного ответа со стороны ГГНС у пациентов с ТДС. Тем не менее, мы показали высокую репрезентативность для выявления тревожно-депрессивных нарушений по стрессиндуцированному изменению содержания глюкозы в крови.

Таким образом, несмотря на различную этиологию возникновения тревожнодепрессивного состояния у больных и депрессивно-подобного поведения у крыс после НПС, общим нарушением среди исследованных стресс-реализующих систем является дисфункция ГГНС, а специфическим для модели депрессии — изменение функционирования системы нейротрофинов.

5. ВЫВОДЫ

- 1) Модели XHC и HПС сопоставимы по индукции депрессивно-подобного поведения у взрослых крыс.
- 2) У крыс, перенесших НПС, увеличен исходный уровень кортикостерона в крови и коре БП, а также снижен исходный уровень BDNF в крови и коре БП.
- 3) У крыс с тревожным и депрессивно-подобным поведением нарушена физиологическая реакция на субхронический стресс в виде отсутствия увеличения кортикостерона в крови и коре БП, выявленного у крыс контрольной группы.
- 4) У пациентов с тревожно-депрессивной симптоматикой повышена исходная активность ГГНС (по уровню кортизола и АКТГ в крови) и системы провоспалительных цитокинов (по уровню ИЛ-6 и ФНОα), а также изменена реактивность на острое стрессорное воздействие.

6. СПИСОК СОКРАЩЕНИЙ

BDNF – brain derived neurothrophic factor

NGF – nerve growth factor

АКТГ – аденокортикотропный гормон

ГГНС – гипоталамо-гипофизарно-надпочечниковая система

ГР – глюкокортикоидные рецепторы

ГМ-КСФ – гранулоцитарно-моноцитарный колониестимулирующи фактор

ДМТ – дексаметазоновый тест

ИМАО – ингибиторы моноаминоксидазы

ИЛ - интерлейкин

ИФу – интерферон гамма

Кора БП – кора больших полушарий

ЛПС – бактериальный липополисахарид

MP – минералокортикоидные рецепторы

НПС – неонатальный провоспалительный стресс

САС – симпато-адреналовая система

СИОС – селективные ингибиторы обратного захвата серотонина

ТДС – тревожно-депрессивная симптоматика

ФК – фронтальная кора головного мозга

ХНС – хронический непредсказуемый стресс

ЦНС – центральная нервная система

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. Фрейман С.В., Онуфриев М.В., Степаничев М.Ю., Моисеева Ю.В., Лазарева Н.А., Гуляева Н.В. Стрессогенные эффекты однократной инъекции физиологического раствора: системные (кровь) и центральные (фронтальная кора, дорсальный и вентральный гиппокамп) // Нейрохимия. -2016. Vol. 33, № 2. -P. 122–127.
- TishkinaA., Stepanichev M., Kudryashova I., Freiman S., Onufriev M., Lazareva N., Gulyaeva N. Neonatalpro-inflammatory challenge in male Wistarrats: Effects on behavior, synaptic plasticity, and adrenocortical stress response // Behav. Brain Res. Elsevier B.V. -2016. - Vol. 304. - P. 1–10.
- 3. Stepanichev M., Tishkina A., Novikova M., Levshina I., Freiman S., Onufriev M., Levchenko O., Lazareva N., Gulyaeva N. Anhedonia but not passive floating is an indicator of depressive-like behavior in two chronic stress paradigms // Acta Neurobiol. Exp. (Wars). 2016. Vol. 76, № 4. P. 324–333.
- 4. Onufriev M.V., Freiman S.V., Peregud D.I., Kudryashova I.V., Tishkina A.O., Stepanichev M.Yu., Gulyaeva N.V. Neonatal proinflammatory stress induces accumulation of corticosterone and Interleukin-6 in the hippocampus of juvenile rats: potential mechanism of synaptic plasticity impairments // Biochemistry (Moscow) 2017. Vol. 82 No. 3. P. 275-281.
- Stepanichev M. Manolova A., Peregud D., Onufriev M., Freiman S., Aniol V., Novikova M., Moiseeva Y., Lazareva N., Gulyaeva N. Specific activity features in the forced swim test: brain neurotrophins and development of stress-induced depressive-like behavior in rats // Neuroscience. IBRO. 2018. -Vol. 375. P. 49–61.