

ОКИСЛИТЕЛЬНОЕ ПОВРЕЖДЕНИЕ БЕЛКОВ И НУКЛЕИНОВЫХ КИСЛОТ СОПРОВОЖДАЕТ ХОЛИНЕРГИЧЕСКУЮ ГИПОФУНКЦИЮ В МЕДИАЛЬНОМ СЕПТАЛЬНОМ КОМПЛЕКСЕ МЫШЕЙ ПОСЛЕ ОЛЬФАКТОРНОЙ БУЛЬБЭКТОМИИ

Недогреева О.А.

e-mail: nedogreewaolga@gmail.com

Введение: ольфакторная бульбэктомия (ОБ)

MS — медиальный септум, **vDB** — вертикальная ветвь диагональной полоски Брока, **NBM** — базальное ядро Мейнерта, **SI** — безымянная субстанция **LDT** — латеродорзальное тегментальное ядро, **PPT** — педункулопонтийное тегментальное ядро (Paul et al., 2015).

Введение: ранее полученные данные

Показатель	7 сут.	14 сут.	30 сут.	54 сут.
Поведение (открытое поле, водный лабиринт)				
XAT			<u> </u>	
ФРН			<u> </u>	
Микроглия (число клеток)				=

Цель работы –

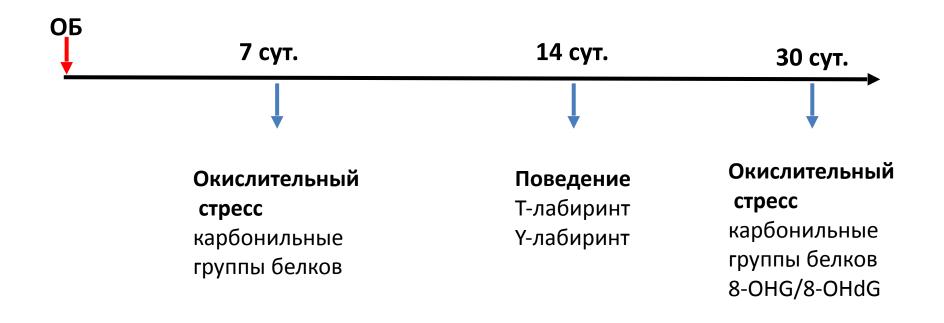
исследование влияния ОБ на рабочую память и показатели окислительного стресса в тканях мозга мышей.

Задачи:

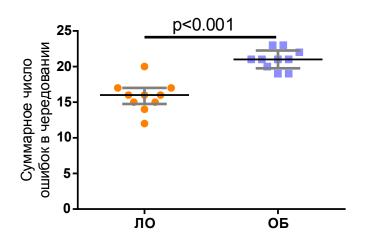
- исследовать состояние рабочей памяти мышей после ОБ в Т- и Y-образных лабиринтах;
- определить влияние ОБ на содержание окисленных форм белков в тканях MS, гиппокампа и неокортекса через 7 и 30 сут. п.о.;
- определить влияние ОБ на окислительное повреждение нуклеиновых кислот (8-HOG) в клетках МЅ через 30 сут. п.о.

Объект исследования и методы

Объект исследования: самцы мышей линии C57BL/6


Методы исследования поведения:

- Т-образный лабиринт
- Ү-образный лабиринт


Методы исследования биохимических и морфологических показателей:

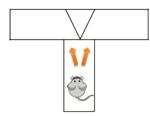
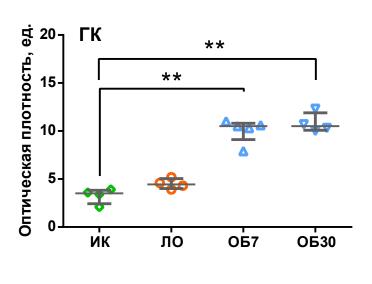
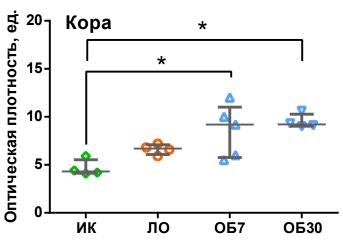
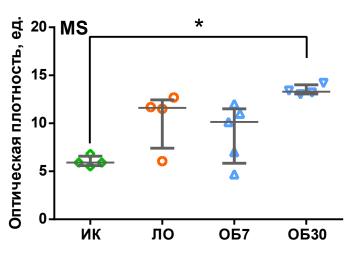

- Вестерн-блот (карбонильные группы белков)
- Иммуногистохимическое окрашивание (XAT, 8-OHG/8-OHdG)

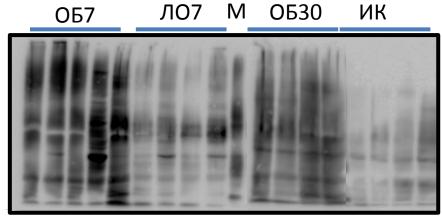
Схема эксперимента

Результаты: рабочая память

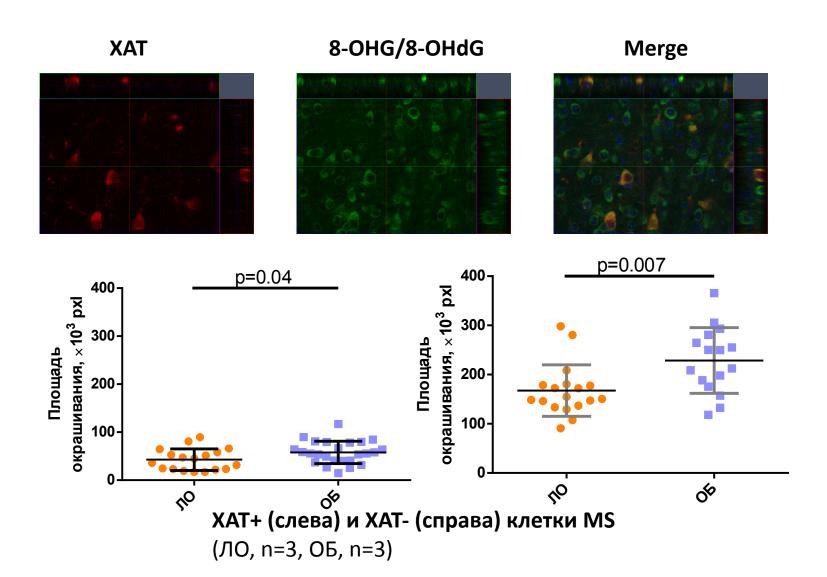

Реакция спонтанного чередования в Тообразном лабиринте (интервал 1 мин между выборами) (ЛО, n=10, ОБ, n=10)






Реакция спонтанного чередования в уобразном лабиринте (ЛО, n=9, ОБ, n=10)

Результаты: окислительное повреждение белков



ГК (ИК, n=4 ЛО, n=4, ОБ7, n=5, ОБ30, n=4)

Результаты: окислительное повреждение нуклеиновых кислот

Обсуждение

	Карбонильные группы белков		Микроглия, число клеток	Фактор роста нервов	XAT
ГК				<u> </u>	<u> </u>
MS	↑	†	Ś	=	=
Кора			?	=	=

50 сут. п.о.	Микроглия, число клеток	Фактор роста нервов	XAT
ГК	=		↓

Выводы:

- ОБ приводит к нарушению поведения спонтанного чередования и рабочей памяти у мышей.
- ОБ вызывает повышение содержания карбонильных групп в белках исследованных структур мозга мышей.
- ОБ приводит к значимому повышению уровня окислительного повреждения нуклеиновых кислот как в холинергических, так и в нехолинергических клетках MS.